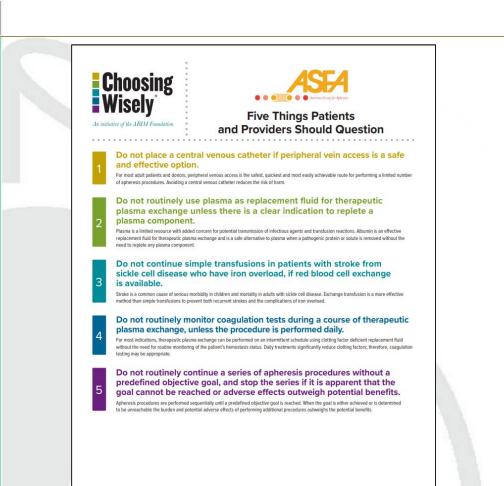

Vascular access: always central line?

María-Jesús Mustieles

Apheresis Unit, ICNU University Clínic Hospital Barcelona

Introduction

Vascular access in therapeutic apheresis


- Usual
 - Peripheral vascular access (PVA)
 - Central venous catheter (CVC) —
- Infection
- Thrombosis
- Insertion complications

Less common

- Venous Access Ports
- Arteriovenous Fistulas & Grafts

Experts widely agree that **peripheral venous access** should be the first option

These items are provided solely for informational purposes and are not intended as a substitute for consultation with a medical professional. Patients with any specific questions about the items on this list or their individual situation should consult their physicians.

3

Choosing Wisely for apheresis

Laura Connelly-Smith et al. J Clin Apher. 2018;33:576–579.

Do not place a central venous catheter if peripheral vein access is a safe and effective option.

For most adult patients and donors, peripheral venous access is the safest, quickest and most easily achievable route for performing a limited number of apheresis procedures. Avoiding a central venous catheter reduces the risk of harm.

Released April 25, 2018

Plasma is a limited resource with added concern for potential transmission of infectious agents and transfusion reactions. Albumin is an effective replacement fluid for threapeutic plasma exchange and is a safe alternative to plasma when a pathogenic protein or solute is removed without the need to replete any plasma component.

Do not continue simple transfusions in patients with stroke from sickle cell disease who have iron overload, if red blood cell exchange is available.

Stroke is a common cause of serious morbidity in children and mortality in adults with sickle cell disease. Exchange transfusion is a more effective method than simple transfusions to prevent both recurrent strokes and the complications of iron overload.

Do not routinely monitor coagulation tests during a course of therapeutic plasma exchange, unless the procedure is performed daily.

For most indications, therapeutic plasma exchange can be performed on an intermittent schedule using clotting factor deficient replacement fluid without the need for routine monitoring of the patient's hemostasis status. Daily treatments significantly reduce clotting factors; therefore, coagulation testing may be appropriate.

Do not routinely continue a series of apheresis procedures without a predefined objective goal, and stop the series if it is apparent that the goal cannot be reached or adverse effects outweigh potential benefits.

Apheresis procedures are performed sequentially until a predefined objective goal is reached. When the goal is either achieved or is determined to be unreachable the burden and potential adverse effects of performing additional procedures outweighs the potential benefits.

These items are provided solely for informational purposes and are not intended as a substitute for consultation with a medical protessional. Patients with any specific questions about the items on this list or their individual situation should consult their physicians.

Choosing Wisely for apheresis

Laura Connelly-Smith et al. J Clin Apher. 2018;33:576–579.

5

TANHEHCO ET AL.

Journal of Clinical Apheresis ... ASSA –WILEY 575

TABLE 3 Type of vascular access

		Frequency of use described as a percent of total patients							
Type of vascular access site (n = 144)	Patient location	Never	Rarely (≤10% of patients)	Occasionally (11-50% of patients)	Often (51-90% of patients)	Always ($\geq 91\%$ of patients)			
Peripheral veins	Inpatient	22 (15.3%)	72 (50.0%)	35 (24.3%)	12 (8.3%)	3 (2.1%)			
	Ambulatory	16 (11.1%)	29 (20.1%)	49 (34.0%)	39 (27.1%)	11 (7.6%)			
Tunneled, internal jugular or	Inpatient	7 (4.9%)	35 (24.3%)	48 (33.3%)	40 (27.8%)	14 (9.7%)			
subclavian central venous catheters	Ambulatory	15 (10.4%)	33 (22.9%)	45 (31.3%)	39 (27.1%)	12 (8.3%)			
Nontunneled, internal jugular	Inpatient	7 (4.9%)	14 (9.7%)	49 (34.0%)	62 (43.1%)	12 (8.3%)			
or subclavian central venous catheters	Ambulatory	48 (33.3%)	48 (33.3%)	34 (23.6%)	13 (9.0%)	1 (0.7%)			
Femoral central venous catheter	Inpatient	14 (9.7%)	74 (51.4%)	39 (27.1%)	16 (11.1%)	1 (0.7%)			
	Ambulatory	102 (70.8%)	33 (22.9%)	7 (4.9%)	1 (0.7%)	1 (0.7%)			
Intravenous access	Inpatient	40 (27.8%)	46 (31.9%)	36 (25.0%)	19 (13.2%)	3 (2.1%)			
devices (eg, cutaneous ports)	Ambulatory	33 (22.9%)	21 (14.6%)	45 (31.3%)	40 (27.8%)	5 (3.5%)			
Graft/fistula	Inpatient	39 (27.1%)	71 (49.3%)	30 (20.8%)	3 (2.1%)	1 (0.7%)			
	Ambulatory	35 (24.3%)	62 (43.1%)	37 (25.7%)	9 (6.3%)	1 (0.7%)			
Arterial lines	Inpatient	137 (95.1%)	6 (4.2%)	0 (0%)	0 (0%)	1 (0.7%)			
	Ambulatory	140 (97.2%)	3 (2.1%)	0 (0%)	0 (0%)	1 (0.7%)			
Peripherally inserted central catheter	Inpatient	129 (89.6%)	9 (6.3%)	3 (2.1%)	2 (1.4%)	1 (0.7%)			
	Ambulatory	132 (91.7%)	5 (3.5%)	2 (1.4%)	4 (2.8%)	1 (0.7%)			

Survey to ASFA annual meeting attendees (2018). **Type of vascular access and frequency of use**

Tanhehco, YC, Zantek, ND, Alsammak, M, et al. Vascular access practices for therapeutic apheresis: Results of a survey.

J Clin Apher. **2019**; 34: 571-578.

https://doi-org.sire.ub.edu/10.1002/jca.21726

$TABLE \ 3 \quad \ \ {\rm Type \ of \ vascular \ access}$

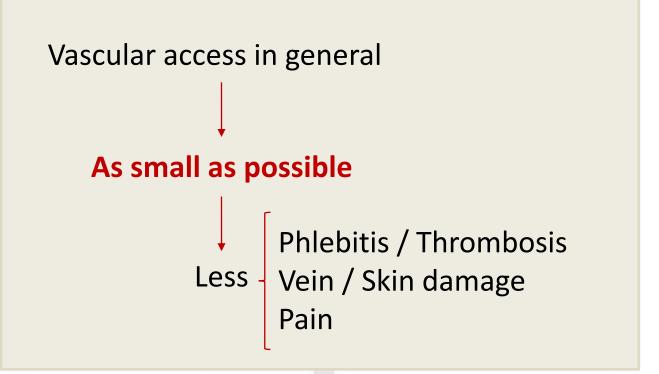
TANHEHCO ET AL.

		Frequency of use described as a percent of total patients								
Type of vascular access site (n = 144)	Patient location	Never	Rarely (≤10% of patients)	Occasionally (11-50% of patients)	Often (51-90% of patients)	Always ($\geq 91\%$ of patients)				
Peripheral veins	Inpatient Ambulatory	22 (15.3%) 16 (11.1%)	72 (50.0%) 29 (20.1%)	35 (24.3%) 49 (34.0%)	12 (8.3%) 39 (27.1%)	3 (2.1%) 11 (7.6%)				
Tunneled, internal jugular or subclavian central venous catheters	Inpatient Ambulatory	7 (4.9%) 15 (10.4%)	35 (24.3%) 33 (22.9%)	48 (33.3%) 45 (31.3%)	40 (27.8%) 39 (27.1%)	14 (9.7%) 12 (8.3%)				

Survey to ASFA annual meeting attendees (2018). Type of vascular access and frequency of use

2 in 3 respondents Never/Rarely used peripheral veins in apheresis to inpatients

1 in 3 respondents Never/Rarely used peripheral veins in ambulatory patients


Graft/fistula	Inpatient	39 (27.1%)	71 (49.3%)	30 (20.8%)	3 (2.1%)	1 (0.7%)
	Ambulatory	35 (24.3%)	62 (43.1%)	37 (25.7%)	9 (6.3%)	1 (0.7%)
Arterial lines	Inpatient	137 (95.1%)	6 (4.2%)	0 (0%)	0 (0%)	1 (0.7%)
	Ambulatory	140 (97.2%)	3 (2.1%)	0 (0%)	0 (0%)	1 (0.7%)
Peripherally inserted central catheter	Inpatient	129 (89.6%)	9 (6.3%)	3 (2.1%)	2 (1.4%)	1 (0.7%)
	Ambulatory	132 (91.7%)	5 (3.5%)	2 (1.4%)	4 (2.8%)	1 (0.7%)

Tanhehco, YC, Zantek, ND, Alsammak, M, et al. Vascular access practices for therapeutic apheresis: Results of a survey. *J Clin Apher*. **2019**; 34: 571-578.

https://doi-org.sire.ub.edu/10.1002/jca.21726

Two aims

Peripheral veins as 1st option Needles as small as possible

D

Needle size in apheresis

softball to assist with the blood flow.

Peripheral veins for blood return should be large

Return

cessed blood. In this study, vein assessment and enough to insert at least a 20 gauge catheter. We prefer assignment of intervention was consistently performed the insertion of an Insyte (Terumo Medical Corp., Elkby the Blood and Marrow Transplant Coordinator, who ton, MD), which can have a saline lock attached and be

1134 PLAS		he new england journal of medicin IUNOSUPPRESSIVE DRUG THERAP			PAST			
Pete		Lindstrom, Ph.D., Christine K. Cassel, d E. Shev, M.D., and Lynn E. Spitler,	, , ,	1999				
with	an Aminco Cell	tinuous-flow plasma exch trifuge operated at $100 \times$ ent's circulation was obt		17G	Journal of Clinical Apheresis 14:51–56 (1999)			
No. cath	16 intravenous of	atheter in an antecubital pugh a femoral vein into t enous shunt between the in. An amount of plasma	Selection of the Collection	n of Peripher	Venous Access for ral Blood Progenitor Apheresis Nurses			
	16G		-	rmid,* Christopher Bredeson, and Lothar B. Huebsch ieneral Campus Blood and Marrow Transplant Programme, University of Ottawa, Canada				
			alone, apheresis procedures i G-CSF injections. Ninety-thi tients underwent two apheresis maining two patients, one mo and 1 with G-CSF alone, un lections. Three collections w tients who had received seven regimes.	ee of the ninety-five pa- is procedures while the re- bilized with chemotherapy derwent three planned col- ere planned for those pa-	return line as the two lines cannot be in the same arm. Veins that feel hardened or cordlike on palpation should be avoided, as they may not bleed adequately. Healthy veins have the ability to distend with touringuet pressure, so if a vein feels the same before and after placement of a tourniquet, it may be that the vein is large and firm from damage secondary to previous venipuncture for chemotherapy. All patients had a Terumo AVF (Terumo			
			Peripheral Vein Assessme		Medical Corp., Elkton, MD) 17-gauge needle inserted for access. A blood pressure cuff, inflated to a comfortable			
			A clear understanding of va venipuncture skills must be		level for the patient, was applied throughout the collec- tion procedure. Patients were often required to squeeze a			

venipuncture skills must be attributes of the personnel

assessing and inserting the venous access and return devices. The PBPC collection process requires the estab-

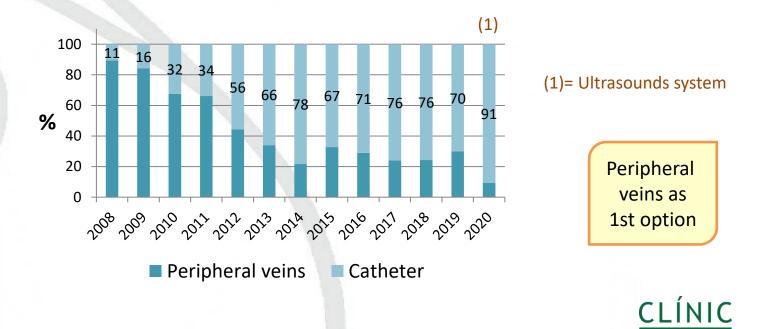
lishment of two venues for blood flow. One for the withdrawal of blood or access and one for returning the pro-

TODAY

ncluded in disposable kits:

micus MNC→ two 17G needles **Dptia CMNC** \rightarrow one **17G** needle laemonetics MCS+ → one 17G needle

9


Our experience in Hospital Clinic of Barcelona

Hospital Universitari

Catheters placed stem cell collections (autologous donors)

Number of collections/year (median): 71 (Range:56-111)

11

Peripheral venous access Type/Gauge

Years (aprox.)

1975-2000 Metal needles 16-17G → Inlet and Return

2000-2016 Metal needles $16-17G \rightarrow$ Inlet line Plastic cannulas \rightarrow Return line

- → Always metal needles for inlet line
- \rightarrow Same gauge for all patients
- \rightarrow Whole blood donation= 16G
- \rightarrow Not confident enough to change the patern

Needles as small as possible

2012: First chronic patients

(Photopheresis and Apheresis LDL-Cholesterol)

Classical standards didn't work

Peripheral venous access review

Peripheral vascular access review

1st step: Knowing needles and cannulas

2nd step: Saving veins

3rd step: Veins assesment

4th step: Maximizing the vein response

Peripheral vascular access review

1st step: Knowing needles and cannulas

- When choosing the peripheral vascular access, sometimes we obtain the expected flow rate and sometimes we don't
- As veins response is not always "logical", we **analized needles**

Learning from Phisics. Factors determining the flow rate

Hagen–Poiseuille equation

$$Q = \frac{\Delta P \,\pi \,r^4}{8 \,\eta \,l}$$

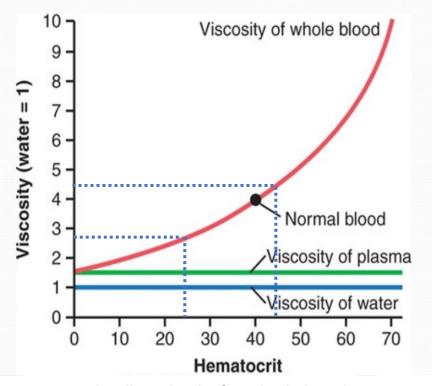
Q: Flow rate

- **ΔP** : Pressure difference between the two ends of the needle Large veins provide better flow rates
- **r** : Needle radius

Doubling needle radius multiply flow rate by 16

l : Needle length

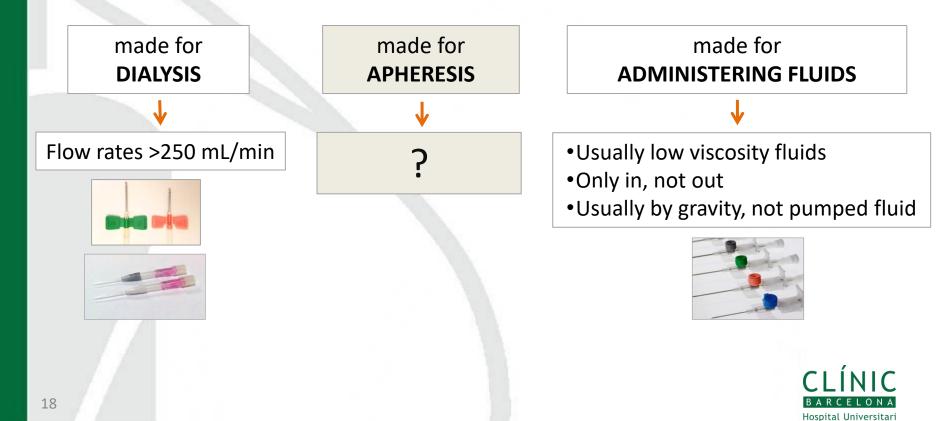
Doubling needle length decreases flow rate to half


η: Blood viscosity

Doubling blood viscosity decreases flow rate to half

Ideal situation <u>Needle</u>: •Large radius •Short length <u>Patient</u>: •Large vein •Not very high hematocrit

Hematocrit and blood viscosity



Guyton and Hall Textbook of Medical Physiology

As the range of usual hematocrits (25-45%) is over 20 points, **changes in the flow rate due to hematocrit** can be significative

Avalaible peripheral vascular devices

Measuring flow rates

How much flow rate will avalaible common peripheral vascular devices provide **without the intervention of a vein**?

Peripheral venous access devices for apheresis: 16-gauge is not always needed

María-Jesús Mustieles, Maria Acosta, Joan Cid ^(D), María Jiménez, Dolors Mateo, Bienvenida Andreu, Cristina Alba, Dolores Perea, and Miquel Lozano ^(D)

- 2016. In a simulated TPE, we measured the flow rate provided by 2 needles and 6 plastic cannulas using blood at 25, 30, 35, 40, 45% hct.
- We made a table with the flow rates registered and try to follow it when choosing the peripheral vascular device

Flow rates table	
------------------	--

Htc	needle 16G	needle 17G	Supercath 15G	Supercath 16G	Venflon 16G	Venflon 18G	Venflon 20G	Venflon 22G	
45%	142	142	142	142	142	117	77	45	Inlet
40%	142	142	142	142	142	119	83	51	iniet
35%	142	142	142	142	142	121	87	54	
30%	142	142	142	142	142	123	88	55	
25%	142	142	142	142	142	133	93	58	

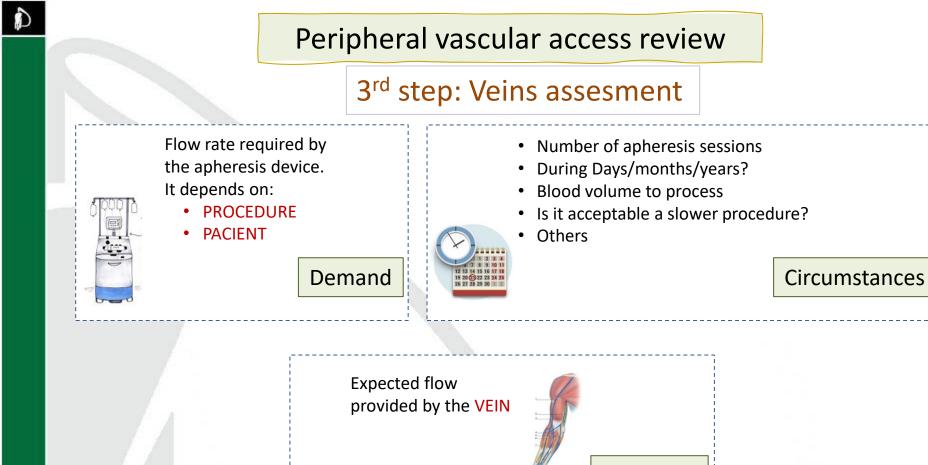
ŀ	Htc	needle 16G	needle 17G	Supercath 15G	Supercath 16G	Venflon 16G	Venflon 18G	Venflon 20G	Venflon 22G	
4	15%	142	142	142	142	142	140	94	55	Return
4	0%	142	142	142	142	142	142	104	62	Netum
3	85%	142	142	142	142	142	142	106	66	
3	80%	142	142	142	142	142	142	109	68	
2	.5%	142	142	142	142	142	142	114	68	CL

Mustieles MJ, et al. TRANSFUSION March 2020; 60: 607-12

Changed after the flow rates mesurement

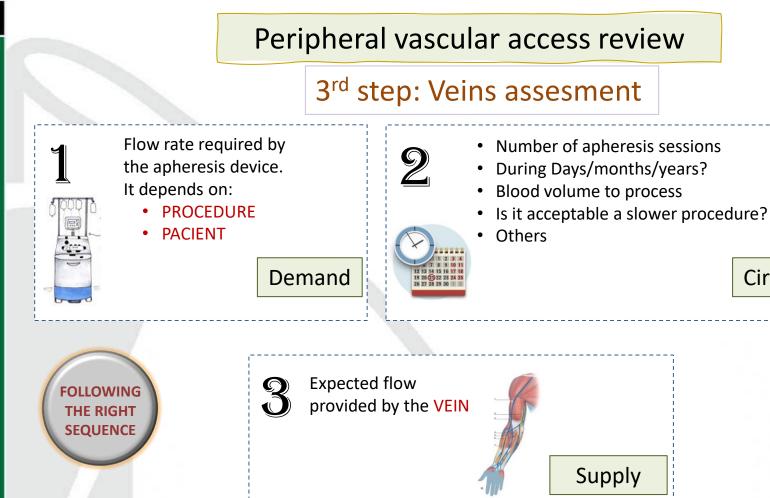
- We've been using the flow rates table for 5 years and now we trust cannulas even as inlet
- We stopped using metal needles and some of the cannulas as we had smaller options
- We use supercath (designed for dialysis) only when desired flow rate is higher than 90-100 mL/min
- We have into account hematocrit before choosing the cannula
- If flow rate is lower than expected, we look for the reason not in the cannula but in other factors

Peripheral vascular access review


2nd step: Saving veins

Asking for some external help to save the patient's veins

- Haematology
 - Using PICCs for chemotherapy
 - Sending patients for stem cell collections as 'early' as possible
- Cannulations /Blood tests
 - Avoiding "apheresis veins"



Supply

	Different PATIENTS ↓ Different flow rate Optia / Stem cell collection / ACD Rate= 1 mL/min/L / Ratio= 1:24					erent Pl	Ļ			
					s	AME	Optia / m	ale / 70 kg /	/ 1,70 m	/ 30% Htc
	PROCE	DURE		WB flow rate (mL/min)		TIENT		ACD rate (mL/min/L)	Ratio	Flow rate (mL/min)
		Fema	ale 50 kg /1,60 m	79		Stem cell collection	ns	1	1:24	111
		Male	e 50 kg /1,60 m	89		Plasma exchange	with albumin	0,6	1:10	94
		Fema	ale 70 kg /1,70 m	101			<u>and anni</u>	0,0		
		Male	e 70 kg /1,70 m	111		Plasma exchange v	with <u>plasma</u>	1	1:10	52
						Photopheresis		1	1:12	56

D

Circumstances

Expected flow rate from a vein

It's imposible predicting the flow rate that a vein will provide so that, we only can speak in terms of probability

We should have into account:

Is there only one appropriate vein?

- More than one option to cannulate
- Changing cannulation place in following apheresis

If we think that the vein is not a good vein, what's the problem? Difficult cannulation and probably correct flow rate

- Good option for treatments of 1-2 apheresis sessions
- Good option when using ultrasounds system

Easy cannulation and probably low flow rate

Good option for chronic apheresis

Peripheral vascular access review

4th step: Maximizing the vein response

Cannulation

During procedure

CANNULATION

How to make the cannulation easier

Actions:

- Patient hydration (drinking or bolus IV fluid)
- Distraction to reduce stress
- Warming the arm some minutes before puncture:
 - Heating pad
- Marking the vein with dots following the vein anatomy
- Using ultrasounds for deep veins

The ability to insert a peripheral vascular access is not related to having good aim with the needle but being patient enough to make the vein appear

PROCEDURE How to improve the flow rate

Flow rate will be mainly established by the draw vein response

Remember that many times, veins need some minutes to recover from the puncture

Actions:

- Keeping the tourniquet placed
- Telling the patient to open and close his/her hand
- Using warmer / warming the patient's arm and hand / warming the room
- Pulling the needle/cannula back slightly
- Help the patient relax
 - Trying to avoid alarms sounding
 - Valium 5 mg
 - Nurse calm whatever happens

Examples

D

Chronic patient

Female / 42 kg

Apheresis LDL cholesterol every 2 weeks

	Procedures	Inlet	Return	Flow rate mL/min	Apheresis System
Aug 2012	1-7	16*	16*	50	Spectra
Nov 2012	8-26	16*	18	50	Spectra
Nov 2013	27-50	18	18	50	Spectra
May 2014	51-92	18	18	70	Optia
Jan 2016	93-211	18	20	70	Optia

*metal needle

Large veins ⇒Large needle= WRONG Inlet line requires metal needles= WRONG If something works, don't change it= NOT ALWAYS RIGHT We reviewed vascular access for chronic patients but finally applied the same principles for **all patients**

Last TPE in a patient with hematoma in the draw arm

- TPE with plasma
- Last apheresis session

We used return cannula as inlet and a 22G cannula placed for fluids as return

Flow rate: 55 mL/min Ac Rate:1,0 mL/min/L Time: 120 min (5 more than the previous TPE)

D

Other patients with Inlet line **not** in the cubital fossa

Flow rate: 56 mL/min
TPE Albumin
Ac Rate: 0'5 mL/m/L
Time: 78 min

2x Venflon 18G / Stem cell collection Htc. 37% / 83 Kg / 1.82 m / 'Medium' veins

90 mL/min Stable interface

2x Venflon 18G / TPE albumin / Large veins

100 mL/min ACD rate: 0.5 mL/m/L Time: 63 min (1.2 plasma volumes processed)

Patient in ICU with a small cannula placed

- TPE with plasma
- Male/ 55 kg / 1'70 m / 27% Htc.

50 mL/min Ac rate 1,1 ml/m/L Time: 104 min

Implantable ports for apheresis

Vortex[®] Ports

(AngioDynamics, Latham, NY)

TidalPort [™] (SportPort) (Norfolk Medical Products, Inc., Skokie, IL)

9.6F

PowerFlow™ Implantable Apheresis IV Port

(Bard Access Systems, Inc., Salt Lake City, UT)

Specifically for apheresis

Titan-port APH (PakuMed medical products gmbh, Essen Germany)

Conclusion

- Vascular access are a main factor in therapeutic apheresis
- Due to complications associated with CVC, peripheral access should be the first option
- A better knowledge of needles/cannulas will allow us using vascular devices as small as possible, essential in patients on long-term apheresis treatments
- Optimizing veins response will allow us to increase flow rates
- Metal needle is not always required in the inlet line
- Vascular Access in apheresis: always central line? Certainly, not always

Thank you

